Chapter 3: Polar Covalent Bonds; Acids and Bases

Concepts to Review from General Chemistry:
\checkmark Electronic Structure
\checkmark Molecular Orbitals and Atomic Orbitals Bonding and Antibonding
Lewis, Condensed, or Kekule Structures
Determining Formal Charge Resonance!!
Today -

- Brønstead-Lowry Acids and Bases
- Organic Acids and Bases
- Acid Dissociation Constants - pKa and pH
- Lewis Acids and Bases -
- Nucleophiles and Electrophiles

Acids and Bases: pH and pKa

Acid-Base reactions are some of the most common in organic chemistry.
They are very important in biochemistry and medicine.

Remember ->

- Acidity depends on medium.

We'll always think of $\mathrm{H}_{2} \mathrm{O}$ as standard, but often acids are less dissociated in organic solvents.

Acids and Bases: pH and pKa

is a species that can donate a proton.
is a species that can accept a proton.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+: \mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{HSO}_{4}{ }^{-} \\
& \text {Acid } \\
& \text { Base } \\
& \text { Conjugate Conjugate } \\
& \text { Acid Base }
\end{aligned}
$$

Acids and Bases: pH and pKa

Remember from General Chemistry:

- The acidity of an aqueous solution is determined by the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

Water Autoprotolysis Constant, Kw $=1.00 \times 10^{-14}$ at $24^{\circ} \mathrm{C}$

In a neutral solution, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$

Acids and Bases: pH and pKa

$\mathrm{HCl}+\mathrm{NaOH} \rightleftharpoons$
$\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{+} \quad \mathrm{NH}_{3}$

Acids and Bases: pH and pKa

In order to compare the reactivity of acids - what we need is a way to quantify their acid strengths.
We can do this using the equilibrium constant for this reaction.

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

in $\mathrm{H}_{2} \mathrm{O},\left[\mathrm{H}_{2} \mathrm{O}\right]=$ Constant, 55 Molar (M)

Acids and Bases: pH and pKa

- $\mathrm{K}_{\mathrm{a}} \mathrm{s}$ typically range from 10^{14} to 10^{-50} in value.

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

- Low or negative pK_{a} means strong acid \rightarrow
- High pK_{a} value means weak acid \rightarrow

Typical values:

- Strong Acid
- Organic Acid
- Organic Compound

Quantifying Acidity and Basicity - Acidity

ACID

- There are more acids and pK_{a} values in Table 3.1.
- Each pK_{a} unit represents an order of magnitude or a power of 10 .
- Which is stronger, HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$, and by exactly HOW MUCH?

Quantifying Acidity and Basicity - Basicity

	ACID	$\mathrm{pK}{ }_{\text {a }}$	CONJUGATE BASE	
Strongest acid		-9		Weakest base
	$\mathrm{Cl}-\mathrm{H}$	-7	Cl^{\ominus}	
		38		
		44		
Weakest acid		50		Strongest base

- You can also use pK_{a} values to compare the strengths of bases:
- The stronger the acid the weaker its conjugate base. WHY?

Acids and Bases: pH and pKa

Strong reacts to give weak.

For an Acid-Base Reaction, the equilibrium lies toward the acid with the higher pKa, the predominant species at equilibrium.

Acids and Bases: pH and pKa

The pH indicates the concentration of hydrogen ions $\left(\mathrm{H}^{+}\right)$

$$
\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}+\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
$$

The Henderson-Hasselbalch Equation

Acids and Bases: pH and pKa

For a Strong Acid -

Hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, can be calculated using the following formula:
$\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$ Hydroxide ion concentration,

Acids and Bases: pH and pKa

Factors Influencing Acidity:

1. Electronegativity-.

Acids and Bases: pH and pKa

Factors Influencing Acidity:

2. Polarizability -

Acids and Bases: pH and pKa

Factors Influencing Acidity:
3. Hybridization -

Acids and Bases: pH and pKa

Factors Influencing Acidity:

4. Inductive effects -

Increasing acidity

Acids and Bases: pH and pKa

Factors Influencing Acidity:
5. Conjugation or "Resonance"

Consider acetate anion $\left[\mathrm{CH}_{3} \mathrm{COO}\right]^{-}$

Acids and Bases: pH and pKa

Factors Influencing Acidity:
6. Stability of $A-(A-=$ the conjugate base)

Factors that influence stability of conjugate bases
(anions) are:

- Size
- Electronegativity
- Resonance

Acids and Bases: pH and pKa

- A Lewis Acid is.
- A Lewis Base is

- Since a Lewis acid is a species that accepts electrons,
- A Lewis base is a species that donates electrons to a nucleus with an empty (or easily vacated) orbital,

For Next Time....

Monday is a HOLIDAY
WEDNESDAY Finish Chapter 3 (3. 5-3.8)
Friday Start Chapter 4 (4.1-4.5)

BRING YOUR MODEL SET!

Homework Problems Chapter 3
\#1,4,7,15,34,35,37,39,43,44, 47

