Chapter 3: Polar Covalent Bonds; Acids and Bases

Concepts to Review from General Chemistry:

- Electronic Structure
- Molecular Orbitals and Atomic Orbitals
- Bonding and Antibonding
- Lewis, Condensed, or Kekule Structures
- Determining Formal Charge
- ✓ Resonance!!

Today –

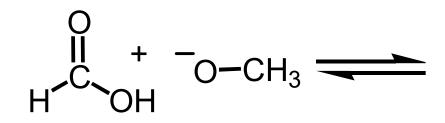
- Brønstead-Lowry Acids and Bases
- Organic Acids and Bases
- Acid Dissociation Constants pKa and pH
- Lewis Acids and Bases
 - Nucleophiles and Electrophiles

- Acid-Base reactions are some of the most common in organic chemistry.
- They are very important in biochemistry and medicine.

Remember ->

- Acidity depends on medium.
- We'll always think of H₂O as standard, but often acids are less dissociated in organic solvents.

- is a species that can donate a proton.
- is a species that can accept a proton.


Remember from General Chemistry:

- The acidity of an aqueous solution is determined by the concentration of H_3O^+ ions.
- Water Autoprotolysis Constant, Kw = 1.00 x 10⁻¹⁴ at 24°C

• In a neutral solution, $[H_3O^+] =$

HCI + NaOH

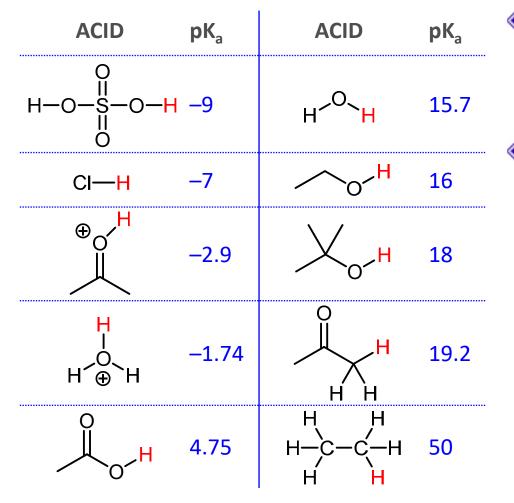
 H_2SO_4 + NH_3

- In order to compare the reactivity of acids what we need is a way to quantify their acid strengths.
- We can do this using the equilibrium constant for this reaction.

 $HA + H_2O = A^- + H_3O^+$

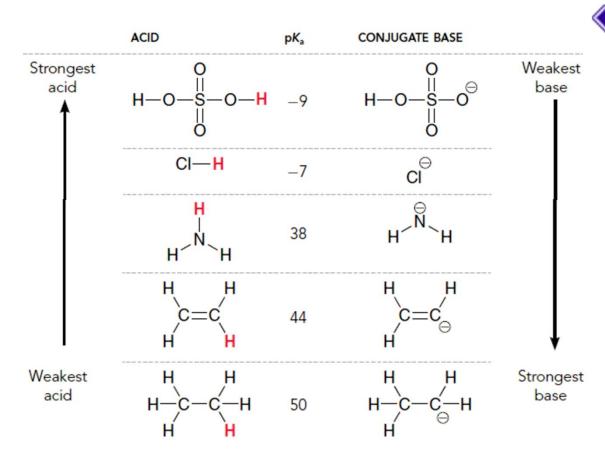
in H_2O , $[H_2O]$ = Constant, 55 Molar (M)

▶ K_as typically range from 10¹⁴ to 10⁻⁵⁰ in value.


$$pK_a = -log K_a$$

- ▶ Low or negative pK_a means strong acid →
- ► High pK_a value means weak acid →

Typical values:


- Strong Acid
- Organic Acid
- Organic Compound

Quantifying Acidity and Basicity – Acidity

- There are more acids and pK_a values in Table 3.1.
 - Each pK_a unit represents an order of magnitude or a power of 10.
 - Which is stronger, HCl or H₂SO₄, and by exactly HOW MUCH?

Quantifying Acidity and Basicity – Basicity



You can also use pK_a values to compare the strengths of bases:

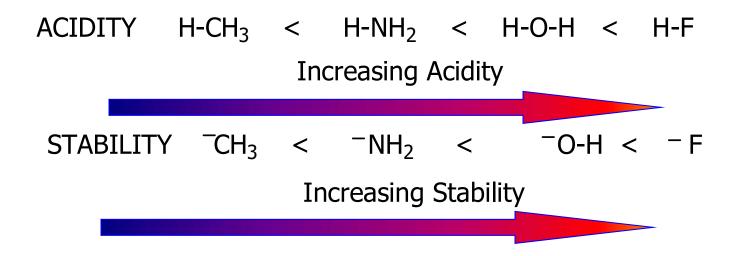
> The stronger the acid the weaker its conjugate base. WHY?

Strong reacts to give weak.

For an Acid-Base Reaction, the equilibrium lies toward the acid with the higher pKa, the predominant species at equilibrium.

The pH indicates the concentration of hydrogen ions (H⁺)

$$pK_{a} = pH + \log \frac{[HA]}{[A^{-}]}$$

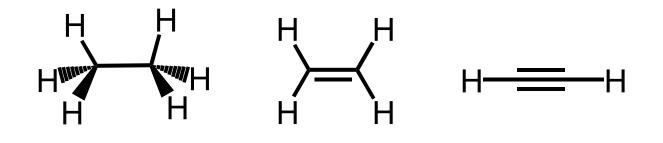

The Henderson–Hasselbalch Equation

For a Strong Acid -

Hydrogen ion concentration, [H⁺], can be calculated using the following formula: [H⁺] = 10^{-pH} Hydroxide ion concentration,

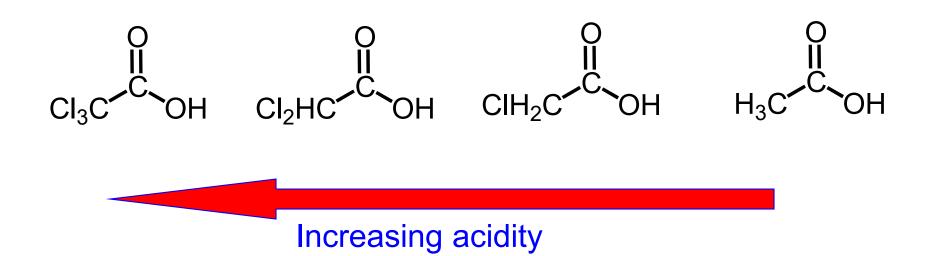
Factors Influencing Acidity:

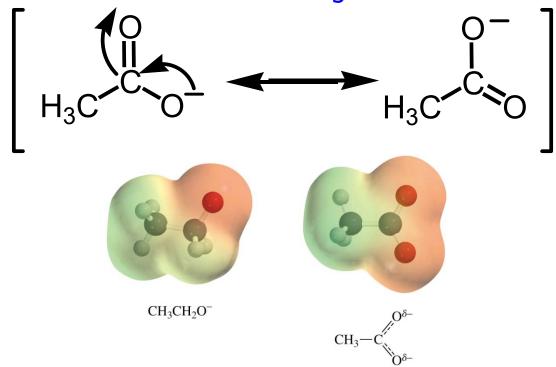
1. <u>Electronegativity</u>-.


Factors Influencing Acidity:

2. Polarizability -

Factors Influencing Acidity:

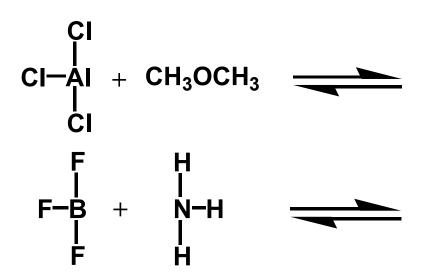

3. <u>Hybridization</u> -



Factors Influencing Acidity:

4. Inductive effects –

<u>Factors Influencing Acidity:</u> 5.Conjugation or "Resonance" Consider acetate anion [CH₃COO]⁻


Factors Influencing Acidity:

6. Stability of A- (A- = the conjugate base)

Factors that influence stability of conjugate bases (anions) are:

- <u>Size</u>
- <u>Electronegativity</u>
- <u>Resonance</u>

- A Lewis Acid is.
- A Lewis Base is

Since a Lewis acid is a species that accepts electrons,

A Lewis base is a species that donates electrons to a nucleus with an empty (or easily vacated) orbital,

For Next Time....

- Monday is a HOLIDAY
- ▶ WEDNESDAY Finish Chapter 3 (3. 5 3.8)
- ► Friday Start Chapter 4 (4.1 4.5)
 - BRING YOUR MODEL SET!
- Homework Problems Chapter 3 #1,4,7,15,34,35,37,39,43,44,47