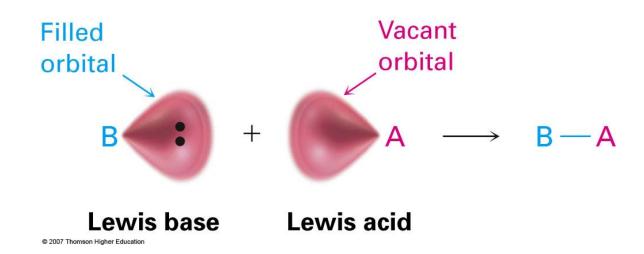
Chapter 3: Polar Covalent Bonds; Acids and Bases

Concepts to Review from General Chemistry:

- ✓ Electronic Structure
- Molecular Orbitals and Atomic Orbitals
- Bonding and Antibonding
- ✓ Lewis, Condensed, or Kekule Structures
- Determining Formal Charge
- Resonance!!
 Today –
- Brønstead-Lowry Acids and Bases
- Organic Acids and Bases
- Acid Dissociation Constants pKa and pH
- Lewis Acids and Bases
 - Nucleophiles and Electrophiles

- donate a proton.
- is a species that can accept a proton.

$$H_2SO_4 + :NH_3 \longrightarrow NH_4^+ + HSO_4^-$$


Remember ->

Acid Base reactions are also called

Acids and Bases: The Lewis Definition

- Lewis acids are _____ and Lewis bases are _____
- Brønsted acids are not Lewis acids because

The Lewis definition leads to a general description of many reaction patterns but

Lewis Acids and Bases

Lewis acid/base definition:

- Acids under the Brønsted-Lowry definition are
- Bases under the Brønsted-Lowry definition are .

Lewis Acids and Bases:

- Since a Lewis acid is a species that accepts electrons, it is termed an
- ▶ A Lewis base is a species that donates electrons to a nucleus with an empty (or easily vacated) orbital, and is termed.

Remember from General Chemistry:

- The acidity of an aqueous solution is determined by the concentration of H_3O^+ ions.
- Water Autoprotolysis Constant, $Kw = 1.00 \times 10^{-14}$ at $24^{\circ}C$

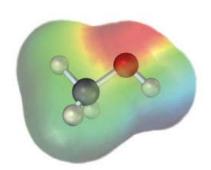
$$KW = [H_3O^+][-OH]$$

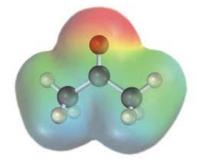
$$\longrightarrow$$
 $^{\dagger}NH_4 + H_2SO^{-}$

- In order to compare the reactivity of acids what we need is a way to quantify their acid strengths.
- We can do this using the equilibrium constant for this reaction.

▶ K_as typically range from 10¹⁴ to 10⁻⁵⁰ in value.

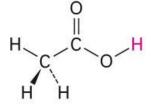
$$pK_a = -log K_a$$

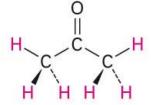

- ▶ Low or negative pK_a means strong acid →
- ▶ High pK_a value means weak acid →


Typical values:

- Strong Acid
- Organic Acid
- Organic Compound

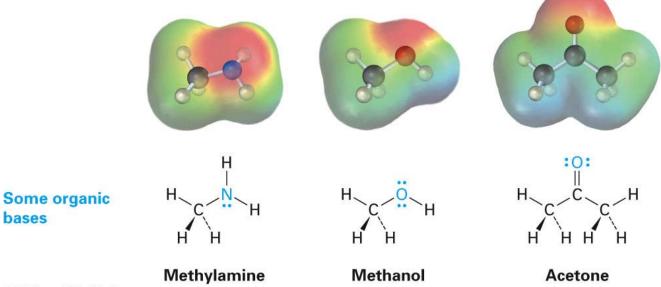
Organic Acids and Organic Bases


Organic Acids:



Some organic acids

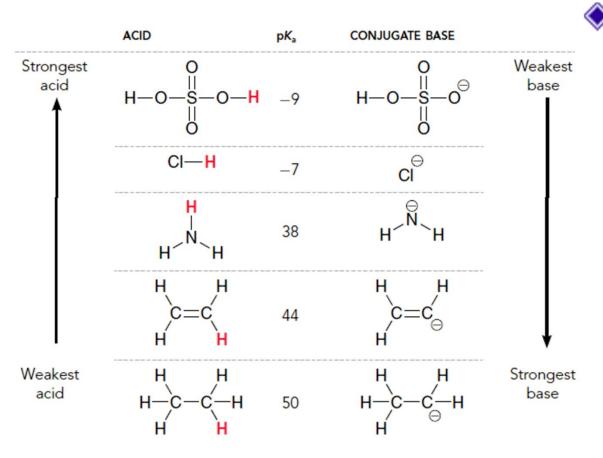
Methanol (p $K_a = 15.54$)



Acetic acid $(pK_a = 4.76)$

Acetone $(pK_a = 19.3)$

Organic Bases


bases

Quantifying Acidity and Basicity – Acidity

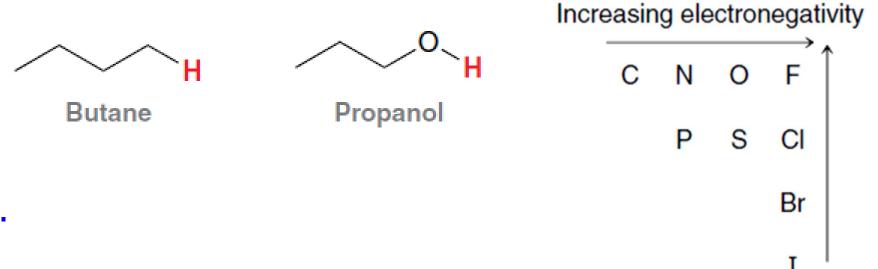
ACID	pK _a	ACID	рК _а
0 	H – 9	H ^{_O} \H	15.7
CI—H	-7	∕_o_H	16
⊕ _O H	-2.9	✓ ₀ _H	18
H O H ⊕ H	-1.74	HHH	19.2
O H	4.75	H—C—C—H H H	50

- There are more acids and pK_a values in Table 3.1.
- Each pK_a unit represents an order of magnitude or a power of 10.
 - Which is stronger, HCl or H₂SO₄, and by exactly HOW MUCH?

Quantifying Acidity and Basicity – Basicity

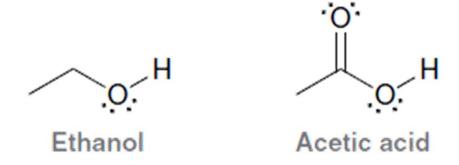
- You can also use pK_a values to compare the strengths of bases:
 - The stronger the acid the weaker its conjugate base. WHY?

- Strong reacts to give weak.
- The stronger the acid, the weaker its conjugate base.
- Stable bases are weak bases.
- For an Acid-Base Reaction, the equilibrium lies toward the acid with the higher pKa, the predominant species at equilibrium.


Qualifying Acidity

- The more effectively a conjugate base can stabilize its negative charge, the stronger the acid.
- What factors affect the stability of a negative formal charge?

These factors can be remembered with the acronym, ARIO.

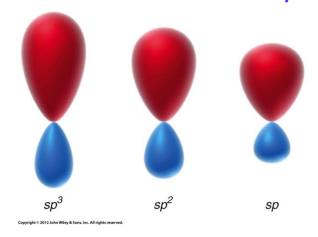

Qualifying Acidity – The Type of Atom

- ◆ ARIO—The type of atom that carries the charge:
 - More electronegative atoms are better at stabilizing negative charge. WHY?
 - Compare the acidity of the two compounds below:

Qualifying Acidity – Resonance

- ARIO—Resonance can greatly stabilize a formal negative charge by spreading it out into partial charges.
- Compare the acidity of the two compounds below by comparing the stabilities of their conjugate bases. How does resonance play a role?

Qualifying Acidity – Induction


- ARIO—Induction can also stabilize a formal negative charge by spreading it out. How is induction different from resonance?
- Compare the acidity of the two compounds below by comparing the stabilities of their conjugate bases. How does induction play a role?

Acetic acid

Trichloroacetic acid

Qualifying Acidity – Orbital

- ARIO —The type of orbital also can affect the stability of a formal negative charge.
- Is a negative charge more stable or less stable if it is held closely to an atom's nucleus? WHY?
- ◆ Rank the ability of these orbitals (2s, 2p, sp³, sp², and sp) to stabilize electrons, and explain.

For Next Time....

- ▶ Friday Start Chapter 4 (4.1 4.5)
 - BRING YOUR MODEL SET!
- Homework Problems Chapter 3#1,4,7,15,34,35,37,39,43,44, 47
- Homework Problems Chapter 4#1, 6, 10, 19, 25, 28, 36, 43, 48, 51,52, 63