Chapter 3: Polar Covalent Bonds; Acids and Bases

Concepts to Review from General Chemistry:

- Electronic Structure
- Molecular Orbitals and Atomic Orbitals
- Bonding and Antibonding
- Lewis, Condensed, or Kekule Structures
- Determining Formal Charge
- ✓ Resonance!!

Today –

- Brønstead-Lowry Acids and Bases
- Organic Acids and Bases
- Acid Dissociation Constants pKa and pH
- Lewis Acids and Bases
 - Nucleophiles and Electrophiles

- A Brønsted–Lowry Acid is a species that can donate a proton.
- A Brønsted–Lowry Base is a species that can accept a proton.

H_2SO_4	+ :NH ₃	NH4 ⁺ -	⊢ HSO ₄ ⁻
Acid	Base	Conjugate Acid	Conjugate Base

Remember ->

► Acid Base reactions are also called <u>Proton Transfer</u> Reactions.

Acidity depends on medium.

► We'll always think of H₂O as standard, but often acids are less dissociated in organic solvents.

Acids and Bases: The Lewis Definition

- Lewis acids are electron pair acceptors and Lewis bases are electron pair donors
- Brønsted acids are not Lewis acids because they cannot accept an electron pair directly (only a proton would be a Lewis acid)
- The Lewis definition leads to a general description of many reaction patterns but there is no scale of strengths as in the Brønsted definition of pK_a

Lewis Acids and Bases

- Lewis acid/base definition:
 - A Lewis acid accepts a pair of electrons.
 - A Lewis base donates a pair of electrons.
- Acids under the Brønsted-Lowry definition are also acids under the Lewis definition.
- Sases under the Brønsted-Lowry definition are also bases under the Lewis definition.
- This reaction fits both definitions.

$$H^{O'}H^{H} + H^{O'}G^{O'}H^{H} + G^{O'}H^{O'}H^{H} + G^{O'}G^{O'}H^{H} + G^{O'}G^{O$$

Lewis Acids and Bases:

- Since a Lewis acid is a species that accepts electrons, it is termed an ELECTROPHILE ('lover of electrons')
- A Lewis base is a species that donates electrons to a nucleus with an empty (or easily vacated) orbital, and is termed a NUCLEOPHILE.

Remember from General Chemistry:

- The acidity of an aqueous solution is determined by the concentration of H_3O^+ ions.
- Water Autoprotolysis Constant, Kw = 1.00 x 10⁻¹⁴ at 24°C

 $Kw = [H_3O^+][-OH]$

- In a neutral solution, $[H_3O^+] = [-OH] = 1.00 \times 10^{-7} M$ pH = -log $[H_3O^+]$
- ▶ Thus, in a neutral solution the pH is 7
- Acidic Solutions have $[H_3O^+] > 10^{-7}$ M and a pH < 7
- Basic Solutions have $[H_3O^+] < 10^{-7} \text{ M}$ and a pH > 7

HCI + NaOH
$$\longrightarrow$$
 NaCI + H₂O

$$H_2SO_4$$
 + NH_3 + H_2SO^-

- In order to compare the reactivity of acids what we need is a way to quantify their acid strengths.
- We can do this using the equilibrium constant for this reaction.

$$HA + H_2O \longrightarrow A^- + H_3O^+$$
$$K_{eq} = \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[H_2O\right]\left[HA\right]}$$

in H₂O, [H₂O] = Constant, 55 Molar (M) $K_{a} = \frac{\left[H_{3}O^{\dagger}\right]\left[A^{-}\right]}{\left[HA\right]}$

As with any equilibrium, the bigger the Ka the stronger the acid.

▶ K_as typically range from 10¹⁴ to 10⁻⁵⁰ in value.

$$pK_a = -log K_a$$

Low or negative pK_a means strong acid → weak conj. base
 High pK_a value means weak acid → strong conj. Base

Typical values:

- Strong Acid
- Organic Acid
- Organic Compound
- $\begin{array}{ll} (H_2 SO_4) & pK_a = 0 \\ (CH_3 CO_2 H) & pK_a = 4 \\ (CH_4) & pK_a = 40 \end{array}$

Organic Acids and Organic Bases

Organic Acids:

- characterized by the presence of positively polarized hydrogen atom

Some organic acids

Methanol

 $(pK_a = 15.54)$

Acetic acid $(pK_a = 4.76)$

Acetone $(pK_a = 19.3)$

© 2007 Thomson Higher Education

Organic Bases

- Have an atom with a lone pair of electrons that can bond to H⁺
- Nitrogen-containing compounds derived from ammonia are the most common organic bases
- Oxygen-containing compounds can react as bases when with a strong acid or as acids with strong bases

Quantifying Acidity and Basicity – Acidity

- There are more acids and pK_a values in Table 3.1.
 - Each pK_a unit represents an order of magnitude or a power of 10.
 - Which is stronger, HCl or H₂SO₄, and by exactly HOW MUCH?

Quantifying Acidity and Basicity – Basicity

You can also use pK_a values to compare the strengths of bases:

> The stronger the acid the weaker its conjugate base. WHY?

- Strong reacts to give weak.
- The stronger the acid, the weaker its conjugate base.
- Stable bases are weak bases.
- For an Acid-Base Reaction, the equilibrium lies toward the acid with the higher pKa, the predominant species at equilibrium.

Qualifying Acidity

- The more effectively a conjugate base can stabilize its negative charge, the stronger the acid.
- What factors affect the stability of a negative formal charge?
 - The type of **atom** that carries the charge
 - Resonance
 - Induction
 - The type of orbital where the charge resides
- These factors can be remembered with the acronym, ARIO.

Qualifying Acidity – The Type of Atom

♦ ARIO—The type of **atom** that carries the charge:

- More electronegative atoms are better at stabilizing negative charge. WHY?
- Compare the acidity of the two compounds below:

Qualifying Acidity – Resonance

- ARIO—Resonance can greatly stabilize a formal negative charge by spreading it out into partial charges.
- Compare the acidity of the two compounds below by comparing the stabilities of their conjugate bases. How does resonance play a role?

Qualifying Acidity – Induction

- ARIO—Induction can also stabilize a formal negative charge by spreading it out. How is induction different from resonance?
- Compare the acidity of the two compounds below by comparing the stabilities of their conjugate bases. How does induction play a role?

Acetic acid

Trichloroacetic acid

Qualifying Acidity – Orbital

- ARIO The type of orbital also can affect the stability of a formal negative charge.
- Is a negative charge more stable or less stable if it is held closely to an atom's nucleus? WHY?
- Rank the ability of these orbitals (2s, 2p, sp³, sp², and sp) to stabilize electrons, and explain.

Solvation

Secause they are so similar, it is difficult to explain the pK_a difference between ethanol and *tert*-butanol.

*tert-*Butanol p*K*_a = 18

Ethanol p*K*_a = 16

Considering that pK_a values are measured in solution, how might the solvent act to make ethanol a slightly stronger acid? Think about how the solvent could stabilize its conjugate base.

Solvation

- The solvent must form ion—dipole attractions to stabilize the formal negative charge.
- If the *tert*-butoxide is sterically hindered, it won't be as well solvated as the ethoxide.

For Next Time....

- Friday Start Chapter 4 (4.1 4.5)
 BRING YOUR MODEL SET!
- Homework Problems Chapter 3 #1,4,7,15,34,35,37,39,43,44,47
- Homework Problems Chapter 4 #1, 6, 10, 19, 25, 28, 36, 43, 48, 51,52, 63