Chapter 4: Organic Compounds

Part 3: Substituted Cycloalkanes

Cycloalkanes: Ring Strain

Angle strain results when carbon bond angles deviate from the ideal 109.5° bond angle

good overlap

poor overlap
 60

Cyclobutane
90

Cyclopentane 108

Cyclohexane 120

Cyclopentane

Cyclohexane

- The most important cyclic alkane and found throughout nature (i.e. similar to structural units in sugars).
- MCAT's love cyclohexanes
- Understand terminology: axial, equitorial, cis, trans, and geminal

Substituents on the same carbon are called geminal

Drawing Cyclohexane

Newman projection of the chair conformer

ball-and-stick model of the chair conformer of cyclohexane

The chair conformation of cyclohexane is free of ring strain, because the carbons are closer to tetrahedral.

Cis-trans Isomerism

- These two structures are NOT constitutional isomers. WHY?

cis-1,2-Dimethylcyclohexane

trans-1,2-Dimethylcyclohexane

They are STEREOISOMERS. HOW?

Ring Flipping in Cyclohexane

CIS - substitutents on the same side
TRANS - substitutents on opposite sides

Conformations of Cyclohexane

Ring Flipping in Cyclohexane

Conformations of Monosubstituted Cyclohexanes

Monosubstituted Cyclohexane

- Flipping a chair is not like flipping a pancake. Flipping a chair is the result of $\mathrm{C}-\mathrm{C}$ single bonds rotating ONLY.

-

If both versions of the CHAIR were equally stable, you would have a 50/50 mixture of axial/equatorial.

- Why does the equatorial chair dominate the equilibrium?
\diamond The axial substituent causes additional steric strain.

Monosubstituted Cyclohexane

- 1,3-diaxial interactions are equivalent to gauche interactions

Gauche interaction

1,3-Diaxial interaction

When the substituent is in the equatorial position, it is equivalent to an anti interaction.

Monosubstituted Cyclohexane

- Larger groups will cause more steric crowding in the axial position. Consider Table 4.8.

substituent	STERIC HINDRANCE FROM 1,3-DIAXIAL INTERACTIONS (KJ/MOL)	AXIAL-EQUATORIAL RATIO (AT EQUILIBRIUM)
$-\mathrm{Cl}$	2.0	$70: 30$
$-\mathrm{OH}$	4.2	$83: 17$
$-\mathrm{CH}_{3}$	7.6	95:5
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	8.0	96: 4
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	9.2	$97: 3$
$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	22.8	9999 : 1

Disubstituted Cyclohexane

- When multiple substituents are present, the positioning of the groups on the chair must be shown by using solid or dashed wedges or by showing the groups in either axial or equatorial positions.

Cl is $\underline{\mathrm{P}} \mathrm{Cl}$

Disubstituted Cyclohexane

- Consider both chair conformations for the following molecule.

Which would you expect to be more stable? WHY?
Do the same analysis for this molecule.

Fused Rings

Trans-fused cyclohexane is more stable than cis-fused And this is not on the exam.....

Bicyclic Ring Systems

Bicyclo[4.2.0]octane

Bicyclo[2.2.1]heptane

Bicyclo[4.4.0]decane

Naming Bycylic Ring Systems

1. Count total number of carbons.
2. Largest ring, next largest $\&$ smallest give us the numbering. This is put in brackets.
3. Put together name with the bicyclo- prefix.
4. This is not on the exam either.

spiro[4.4]nonane

For Next Time....

Monday Finish Chapter 4 (if we haven't) Chapter 5 (5.1-5.4) BRING YOUR MODEL SET!

- Wednesday Exam \#1 (Chapters 1-4)

Homework Problems Chapter 4
\#1, 6, 10, 19, 25, 28, 36, 43, 48, 51,52, 63

