<u>Chapter 6: Chemical Reactivity and Mechanisms</u>

Today! Chapter 6:

Kinetics and Thermodynamics (6.1-6.6)

Friday Chapter 6: Mechanisms (6.7 - 6.10, 6.12) (We'll come back to 6.11 later.)

Calculate the enantiomeric excess for a sample in which the Ratio of diastereomers determined is 3.5:1.

enantiomeric excess (e.e.)=

enantiomeric excess (e.e.)=

entire mixture

$$=\frac{3.5-1}{3.5+1}$$
 X100%

e.e.
$$= 55\%$$

Or if you think about it – If I have 7/9ths and 2/9ths in a mixture (total of 9/9ths) – the e.e. is going to be (7-2)9ths = 5/9ths

Resolution of Enantiomers

- To separate compounds from one another, most methods take advantage of the differences in physical properties of the compounds to be separated:
 - Distillation separates compounds with different boiling points.
 - Recrystallization separates compounds with different solubilities.
 - Can you think of more methods of separation or purification?

Resolution of a Racemic Mixture

(R)-acid ((S)-acid enantiomers

Thermodynamics is the branch of chemistry that deals with the energy changes accompanying chemical and physical changes.

$$H_{2}O + HA \longrightarrow H_{3}O^{+} + A^{-}$$

$$K_{eq} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[H_{2}O\right]\left[HA\right]}$$

$$mA + nB \longrightarrow sC + tD$$

$$K_{eq} = \frac{\left[\text{products}\right]}{\left[\text{reactants}\right]} = \frac{\left[C\right]^{S}\left[D\right]^{t}}{\left[A\right]^{m}\left[B\right]^{n}}$$

■Reactions can go either forward or backward to reach equilibrium

Enthalpy

• Enthalpy (ΔH or q) is the heat energy exchange between the reaction and its surroundings at constant pressure.

Enthalpy – Bond Dissociation Energies

	kJ/MOL	KCAL/MOL		kJ/MOL	KCAL/MOL
Bonds to H			C–C bonds		
Н—Н	435	104	CH ₃ —CH ₃	368	88
H—CH ₃	435	104	CH ₃ CH ₂ —CH ₃	356	85
H-CH ₂ CH ₃	410	98	(CH ₃) ₂ CH—CH ₃	351	84
H—F	569	136	CH ₃ —Br	293	70
H—CI	431	103	CH ₃ —I	234	56
H — Br	368	88	CH ₃ —OH	381	91
H—I	297	71	X-X		
Н—ОН	498	119	F—F	159	38
			CI—CI	242	58

Similar table on **p.238** in your book.

ΔH° can be calculated from bond dissociation energies

π bond of ethene
$$^{\Delta}H^{\circ} = 63 \text{ kcal/mol}$$
 C—H $^{\Delta}H^{\circ} = 101 \text{ kcal/mol}$
H—Br $^{\Delta}H^{\circ} = 87 \text{ kcal/mol}$ C—Br $^{\Delta}H^{\circ} = 69 \text{ kcal/mol}$
 $^{D}H^{\circ}_{\text{total}} = 150 \text{ kcal/mol}$ C—Br $^{\Delta}H^{\circ} = 69 \text{ kcal/mol}$

 ΔH° for the reaction = ${}^{\Delta}H^{\circ}$ for bonds being broken – ${}^{\Delta}H^{\circ}$ for bonds being formed = 150 kcal/mol – 170 kcal/mol = -20 kcal/mol

Electrophilic Addition of HBr to 2-Butene

The rate-limiting step controls the overall rate of the reaction

Energy Diagrams – Transition States vs. Intermediates

<u>Transition states</u> have partial bonds <u>Intermediates</u> or intermediate products have fully formed bonds

Entropy ΔS

 Consider the ENTROPY and ENTHALPY change for the following process:

 The number of possible translational distributions for the molecules increases with increasing volume. HOW?

Entropy is freedom of motion - often described as randomness

 $+\Delta S$ means the products have more freedom than the reactants

Entropy ΔS

$$\Delta S_{\rm tot} = \Delta S_{\rm sys} + \Delta S_{\rm surr}$$

• For each of the reactions below, predict the sign for $\Delta S_{\rm sys}$.

Gibbs Free Energy

From Keq, we can calculate the Free Energy

- ■The ratio of products to reactants is controlled by their relative Gibbs free energy
- ■This energy is released on the favored side of an equilibrium reaction
- ■The change in Gibbs free energy between products and reacts is written as "DG"

Gibbs standard free energy change (ΔG°)

$$\Delta G^{\circ} = -RTInK_{eq} = -2.303RT(log Keq)$$

 ΔG° = free energy products- free energy reactants

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Gibbs Free Energy ΔG

- If a process at a given temperature is calculated to have a (-) ΔG , the process is EXERGONIC.
 - It will be SPONTANEOUS and favor the products.
 - Note that G is plotted rather than H.
- Energy is released to the surroundings

Gibbs Free Energy ΔG

- If a process at a given temperature is calculated to have a $(+) \Delta G$, the process is ENDERGONIC.
 - It will be NONSPONTANEOUS and favor the reactants.

 What does it mean exactly to FAVOR the reactants?
 - What does it mean exactly
- Energy is absorbed from the surroundings

Endergonic Reaction $+\Lambda G^{\circ}$

Equilibria A + B ⇒ C + D

- Equilibrium is also the state with the lowest free energy overall.
- Why does the equilibrium energy mixture have the lowest *G*?
- How would S_{tot} compare for a mixture of A, B, C, and D versus only C and D?

<u>Kinetics</u> is the study of reaction rates – how fast reactants form and products are consumed.

Rate of a reaction =

$$\begin{pmatrix}
\text{number of collisions} \\
\text{per unit time}
\end{pmatrix}_{X} \begin{pmatrix}
\text{fraction with} \\
\text{sufficient energy}
\end{pmatrix}_{X} \begin{pmatrix}
\text{fraction with} \\
\text{proper orientation}
\end{pmatrix}$$

$$A + B \longrightarrow C$$

Rate = k[A]First order rate constant

$$A + B \longrightarrow C$$

Rate = k[A][B] Second order rate constant

$$A + A \longrightarrow B$$

Rate = $k[A]^2$ Second order rate constant

The rate-limiting step is the step that controls the overall rate of the reaction.

Kinetics

- The reaction rate (the number of collisions that will result in product production in a given period of time) is affected by multiple factors.
 - 1. The concentrations of the reactants
 - 2. The activation energy
 - 3. The temperature
 - 4. Geometry and sterics
 - 5. The presence of a catalyst

Kinetics – Factors that Affect Rates

- How might geometry and sterics affect the reaction rate?
- How might the presence of a catalyst affect the reaction rate?

Energy Diagrams – Kinetics vs. Thermodynamics

- For this energy diagram, which pathway is kinetically favored?
- Which pathway is thermodynamically favored?
- How can temperature be used to control which set of products predominate?

Friday Chapter 6: Mechanisms (6.7 - 6.10, 6.12) (We'll come back to 6.11 later.)

Suggested Homework Problems Chapter 5 #4, 9, 19,23,31, 36,38 (a-c), 39 (a-e),45, 55

<u>Suggested Homework Problems Chapter 6</u> #4, 7, 11, 17, 24, 26, 28, 34-36