<u>Chapter 7: Part 1:</u> Substitution Reactions - SN2

Today Chapter 7 (7.1-7.4)

- 1. Alkyl Halides
- 2. Substitution and Elimination Reactions
- 3. The SN2 Mechanism
- 4. Inversion of Configuration/ Stereochemistry
- 5. Factors Affecting SN2 Reactions
 - 1. The Leaving Group
 - 2. The Nucleophile
 - 3. Steric Hindrance
 - 4. The Solvent

Naming Alkyl Halides

1

Substitution and Elimination Reactions

In Chapters 7 -

- 2 kinds of reactions Substitution and Elimination
- Key to this understanding the factors which determine which mechanism predominates and which products form.

The SN2 reaction: Substitution Nucleophilic *Bimolecular*

(S)-(+)-2-Bromooctane

The reaction mechanism which predominates depends on the following factors:

Remember-

ctions /	Are Affected	I by the	
Leaving Group			
Relative Rate	Conjugate acid of leaving group	p <i>K</i> _a of conj. acid	
10 ⁻⁵	HF	3.5	
1	HCI	-7	
10	HBr	-9	
10 ²	HI	-10	
10 ¹	H ₃ O ⁺	-1.7	
10 ⁵	TsOH	-2.8	
10 ⁸	CF ₃ SO ₂ OH	-6	
	Ctions / Leavi Relative Rate 10 ⁻⁵ 1 10 ² 10 ² 10 ¹ 10 ⁵ 10 ⁸	ctions Are Affected Leaving Group Relative Conjugate acid of leaving group 10^{-5} HF 1 HCI 10 HBr 10^2 HI 10^1 H ₃ O ⁺ 10^5 TsOH 10^8 CF ₃ SO ₂ OH	

A single organic product was obtained when 1-bromo-3-chloropropane was allowed to react with one molar equivalent of sodium cyanide in aqueous ethanol. What was this product?

 $BrCH_2CH_2CH_2CI + NaCN$

Nucleophilicity. What is a Nucleophile? What Makes a Good One?

Nucleophilicity

Rank	Nucleophile	Relative
		rate
•strong	I ⁻ , HS ⁻ , RS ⁻	>10 ⁵
•good	Br-, HO-,	104
•	RO ⁻ , CN ⁻ , N ₃ ⁻	
•fair	NH ₃ , Cl ⁻ , F ⁻ , RCO ₂ ⁻	10 ³
•weak	H_2O , ROH	1
 very weak 	$\bar{RCO_2H}$	10 -2

- $CH_3CH_2Cl + HO^- \longrightarrow CH_3CH_2OH + Cl^$ an alcohol
- $CH_3CH_2Br + HS^- \longrightarrow CH_3CH_2SH + Br^$ a thiol

$$CH_3CH_2I + RO^- \longrightarrow CH_3CH_2OR + I^-$$

an ether

- $CH_3CH_2Br + RS^- \longrightarrow CH_3CH_2SR + Br^$ a thioether

$$CH_{3}CH_{2}I + \ \ \ \ C \equiv N \longrightarrow CH_{3}CH_{2}C \equiv N + I \\a \text{ nitrile}$$

S_N2 Reactivity versus Type of Solvent S_N2 Reaction Rates Increase in Polar Aprotic Solvents

 $CH_3CH_2CH_2CH_2Br + N_3^-$

- •Solvent Type Relative rate
- •CH₃OH
- •H₂O
- •DMSO
- •DMF
- •Acetonitrile

polar protic polar protic polar aprotic polar aprotic polar aprotic

(CH₃)₃CBr

CH₃CH₂Br

(CH₃)₂CHBr

Summary of SN2

For Next Time....

<u>WEDNESDAY Chapter 7 (7.1-7.4)</u> <u>FRIDAY Chapter 7: Alkenes and Eliminations (7.5-7.8)</u> <u>NEXT MONDAY Chapter 7: Unimolecular Reactions</u> (7.9-7.10) <u>FRIDAY Chapter 7: Putting it all together 7.11</u>

<u>Suggested Homework Problems Chapter 6</u> #4, 7, 11, 17, 24, 26, 28, 34-36

Suggested Homework Problems Chapter 7

#1,3,5,16, 18, 21, 37, 41, 47, 48, 54, 56, 60, 62-65, 70, 76