<u>Chapter 7: Part 1:</u> Substitution Reactions - SN2

Today Chapter 7 (7.1-7.4)

- 1. Alkyl Halides
- 2. Substitution and Elimination Reactions
- 3. The SN2 Mechanism
- 4. Inversion of Configuration/ Stereochemistry
- 5. Factors Affecting SN2 Reactions
 - 1. The Leaving Group
 - 2. The Nucleophile
 - 3. Steric Hindrance
 - 4. The Solvent

Naming Alkyl Halides

- 1. The prefixes fluoro, chloro, bromo, iodo are used to indicate presence of halogens.
- 2. They are treated in same manner as alkyl substituents.
- 3. Find longest chain, name it as parent chain

(PRIORITY goes to a double or triple bond if present)

- 4. Number from end nearest any substituent (alkyl or halogen)
- 5. IF <u>two Halides</u> are Equally Distant from Ends of Chain → begin at the end nearer to the substituent whose name comes first in the alphabet

3-bromo-4-chlorohexane

Substitution and Elimination Reactions

- 2 kinds of reactions <u>Substitution</u> and <u>Elimination</u>
- Key to this understanding the factors which determine which mechanism predominates and which products form.

The atom or group that is <u>substituted</u> or <u>eliminated</u> in these reactions is called a <u>leaving group</u>

The SN2 reaction:

Substitution Nucleophilic *Bimolecular* The SN2 is a mechanism in which a nucleophile attacks the back side of a carbon ejecting a leaving group.

(*S*)-(+)-2-Bromooctane (*R*)-(–)-2-Octanol Inversion of Configuration

Remember: A <u>stereospecific</u> reaction is one in which <u>stereoisomeric</u> starting materials give <u>stereoisomeric</u> products.

Because a <u>nucleophile</u> substitutes for the halogen, these reactions are known as <u>nucleophilic substitution</u> reactions

The reaction mechanism which predominates depends on the following factors:

The Leaving Group
 The Nucleophile
 The Solvent
 Steric Hindrance

Remember-

- nucleophile is a Lewis base or *electron-pair donor*
- substrate is usually an alkyl halide

$S_N 2$ Reactions Are Affected by the							
Leaving Group							
•Lea Groι	ving Jp	Relative Rate	Conjugate acid of leaving group	p <i>K</i> _a of conj. acid			
•	F-	10 ⁻⁵	HF	3.5			
•	CI-	1	HCI	-7			
•	Br−	10	HBr	-9			
•	I-	10 ²	HI	-10			

The weaker the base, the better it is as a leaving group The better the leaving group – the faster the reaction.

 H_3O^+

CF₃SO₂OH

-1.7

-6

 H_2O

•CF₃SO₂O⁻

10¹

10⁸

A pKa table is a handy guide to leaving groups

A single organic product was obtained when 1-bromo-3-chloropropane was allowed to react with one molar equivalent of sodium cyanide in aqueous ethanol. What was this product?

 $BrCH_2CH_2CH_2CI + NaCN$

Br is a better leaving group than Cl

 $:N \equiv C - CH_2CH_2CH_2CI + NaBr$

Nucleophilicity. What is a Nucleophile? What Makes a Good One?

The nucleophiles described earlier have all been anions.

HO: HS:
$$CH_3O$$
: $N \equiv C$: etc.

Not all nucleophiles are anions. Many are neutral.

HOH
$$CH_3OH$$
 : NH_3 for example

All nucleophiles, however, are Lewis bases.

The term <u>solvolysis</u> refers to a nucleophilic substitution in which the nucleophile is the solvent.

Nucleophilicity

Rank	Nucleophile	Relative
		rate
•strong	I ⁻ , HS ⁻ , RS ⁻	>10 ⁵
•good	Br-, HO-,	104
•	RO ⁻ , CN ⁻ , N ₃ ⁻	
•fair	NH ₃ , Cl ⁻ , F ⁻ , RCO ₂ ⁻	10 ³
•weak	H_2O , ROH	1
 very weak 	$\bar{RCO_2H}$	10 ⁻²

Anionic vs. Neutral nucleophiles

(In reactions with aldehydes, ketones, and carboxylic acid derivatives)

- No acid catalysis (incompatible)
- Can be reversible, depending on basicity.
- Mechanism can involve sequential 1,2-addition / 1,2elimination steps
- Last step is usually "add acid"

Neutral nucleophiles						
OH ₂	ROH	NH ₃				
RNH ₂	ОН					

- Accelerated by acid catalysis: acid promotes 1,2-addition and 1,2elimination
- · Equilibria generally reversible
- Addition/elimination steps alternate with proton transfer
- · Last step is usually "deprotonate"

An S_N^2 reaction proceeds in the direction that allows the strongest base to displace the weaker base

- $CH_3CH_2CI + HO^- \longrightarrow CH_3CH_2OH + CI^$ an alcohol
- $CH_3CH_2Br + HS^- \longrightarrow CH_3CH_2SH + Br^$ a thiol
 - $\begin{array}{rcl} \mathrm{CH}_3\mathrm{CH}_2\mathrm{I} &+ & \mathrm{RO}^- &\longrightarrow & \mathrm{CH}_3\mathrm{CH}_2\mathrm{OR} &+ & \mathrm{I}^- \\ && & & & \\ && & & \text{an ether} \end{array}$
- $CH_3CH_2Br + RS^- \longrightarrow CH_3CH_2SR + Br^$ a thioether
- - $CH_{3}CH_{2}I + C \equiv N \longrightarrow CH_{3}CH_{2}C \equiv N + I$ a nitrile

 $S_N 2$ Reactivity versus Type of Solvent $S_N 2$ Reaction Rates Increase in Polar Aprotic Solvents

 $CH_3CH_2CH_2CH_2Br + N_3^-$

 Solvent 	Туре	Relative rate
•CH ₃ OH	polar protic	1
•H ₂ O	polar protic	7
•DMSO	polar aprotic	1300
•DMF	polar aprotic	2800
 Acetonitrile 	polar aprotic	5000

In an SN2 reaction: A bulky substituent in the alkyl halide reduces the reactivity of the alkyl halide: <u>steric hindrance</u>

Summary of SN2

- Best with 1° alkyls with good leaving groups.
- 2. Helped by polar aprotic solvents.
- 3. Using good highly polarized species as nucleophiles helps.
- 4. Crowding at the carbon that bears the leaving group slows the rate of bimolecular nucleophilic substitution.

For Next Time....

<u>WEDNESDAY</u> Chapter 7: Alkenes and Eliminations (7.5-7.8) <u>FRIDAY</u> Chapter 7: Unimolecular Reactions (7.9-7.10) <u>NEXT MONDAY</u> Chapter 7: Putting it all together 7.11

<u>Suggested Homework Problems Chapter 6</u> #4, 7, 11, 17, 24, 26, 28, 34-36

Suggested Homework Problems Chapter 7

#1,3,5,16, 18, 21, 37, 41, 47, 48, 54, 56, 60, 62-65, 70, 76