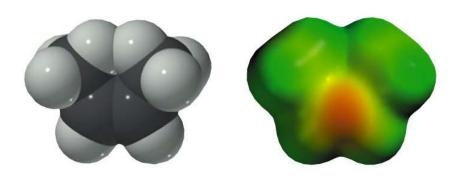

Ch. 7: Part 3 Alkenes Structure and Formation

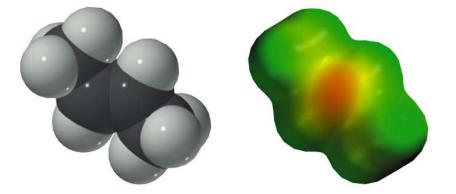
Molecular Formula of an Alkene

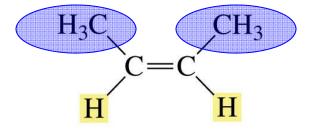
CH₃CH₂=CH₂

CH₃CH₂CH₂CH₂CH₃

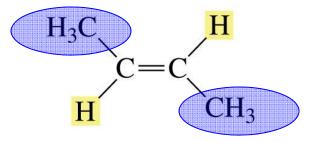
CH₃CH₂CH₂CH₂=CH₂

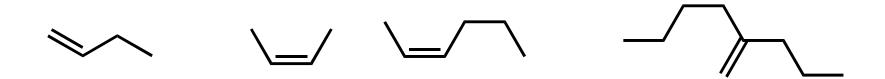






▶ _____indicates that there are fewer hydrogens attached to carbon than in an alkane.


<u>Isomers of Alkene</u>


Cis-2-butene Bp~4C

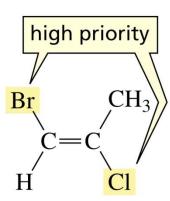
Trans-2-butene Bp~1C

Systematic Nomenclature of Alkenes

1.

2. Cite the substituents in alphabetical order

3.


4.

E and Z isomers

Consider 1-Bromo-2-chloro-propene

Naming by the *E,Z* System

Rule 1:

Rule 2:

Rule 3:

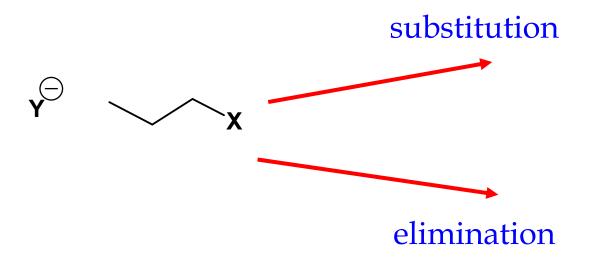
$$-C \equiv N \qquad -c = -N \qquad \qquad N \qquad C \qquad \qquad H \qquad H \qquad H \qquad \qquad H \qquad H \qquad C \qquad CH = CH_2 \qquad C$$

Chapter 7:

Part 4: E2 Reactions to make Alkenes

1. SN1 vs. SN2

- 2. The E2 Mechanism
- Regiochemistry of the E2 Mechanism
- 4. The Stereochemistry of the E2 Mechanism


When an alkyl halide can undergo either $S_N 1$ or $S_N 2$,

Vinyl and aryl halides do not undergo S_N2 because?

Vinyl and aryl halides do not undergo S_N1 because?

RCH=CH-Cl
$$\rightarrow$$
 RCH=CH + Cl \rightarrow Br

In addition to substitution, an alkyl halide can undergo an elimination reaction



The E2 Reaction

$$HO \bigcirc Br$$
 H_2O
 $HO \bigcirc H_2O$
 $HO \bigcirc H_2O$

Consider the regioselectivity of the E2 reaction

$$\begin{array}{c} \text{Br} \\ \hline \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}\text{CH}_3 \\ \textbf{2-bromopentane} \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3\text{CH}_2\text{O}^- \\ \hline \text{CH}_3\text{CH}_2\text{OH} \end{array}} \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH} = \text{CHCH}_3 \\ \text{2-pentene} \\ \text{major product} \\ \text{(mixture of E and Z)} \end{array} + \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH} = \text{CH}_2\\ \text{1-pentene} \\ \text{minor product} \\ \text{(mixture of E and Z)} \end{array}$$

$$C = C$$
 H
 $C = C$
 CH_2CH_3

(E)-2-pentene

interacting electron clouds cause steric strain H_3C CH₂CH₃

(Z)-2-pentene

Zaitsev's Rule for Elimination Reactions

In the elimination of HX from an alkyl halide, the more highly substituted alkene product predominates

$$\begin{array}{c|c} & \text{Br} \\ & \downarrow \\ \text{CH}_3\text{CH}_2\text{CHCH}_3 & \xrightarrow{\text{CH}_3\text{CH}_2\text{O}^- \text{ Na}^+} \\ \hline \end{array}$$

2-Bromobutane

Conjugated alkene products are preferred over the more substituted alkene product

Steric hindrance also affects the product distribution

Stereochemistry of the E2 Reaction

The best overlap of the interacting orbitals is achieved through back side attack

Anti elimination avoids repulsion of the electron-rich base

The anti elimination is favored over the syn elimination

Characteristics of the E2 mechanism

For Next Time....

Suggested Homework Problems Chapter 7 #1,14,21,26, 31, 36,38,41,44,50,52,53,59,64,65