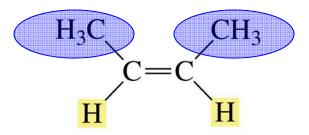
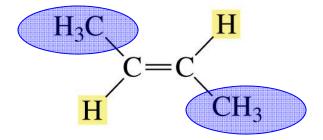

Ch. 7: Part 3 Alkenes Structure and Formation


Molecular Formula of an Alkene

```
Cyclic alkene:
      Noncyclic alkene:
                                                                    C_nH_{2n-2}
      C_nH_{2n}
      CH<sub>3</sub>CH<sub>2</sub>=CH<sub>2</sub>
CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
         Alkane
         C_nH_{2n+2}
              CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>=CH<sub>2</sub>
                                                                                              Cycloalkene
                              Alkene
                                                                 Cycloalkane
                                                                                              C_nH_{2n-2}
                              C_nH_{2n}
                                                                 C_nH_{2n}
```

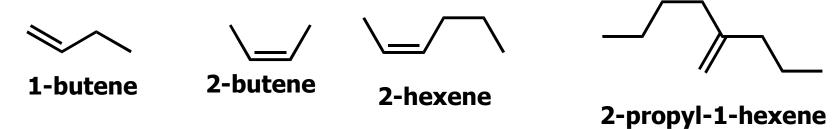
Unsaturation indicates that there are fewer hydrogens attached to carbon than in an alkane.

<u>Isomers of Alkene</u>



Cis-2-butene Bp~4C

cis (identical or analogous substitutents on same side)



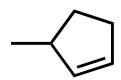
Trans-2-butene Bp~1C

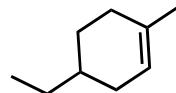
trans (identical or analogous substituents on opposite sides)

Systematic Nomenclature of Alkenes

1. Number the longest continuous chain containing the functional group

2. Cite the substituents in alphabetical order


3. Name with the lowest functional group number and then the lowest substituent numbers


3,4-dimethyl-2-pentene

2-bromo-4-methyl-3-hexene

4. No numbering of the functional group is needed in a cyclic alkene

3-methylcyclopentene

2,3-Dimethyl-cyclohexene

4-ethyl-1-methylcyclohexene

1,3-cyclopentadiene

E and Z isomers

1-Bromo-2-chloro-propene

E – Entgegen – opposite sides

Z – Zusamen – same side

Naming by the *E,Z* System

Rule 1: Consider the atomic number of the atoms bonded directly to a specific sp^2 carbon.

high priority

Br Cl Br
$$CH_3$$
 $C=C$
 H CH_3
 $C=C$
 H CI

The Z isomer high priority

 CH_3
 $C=C$
 C

Rule 2: If there is a tie, consider the atoms attached to the tie.

Rule 3: Multiple bonds are treated as attachment of multiple single bonds.

$$-C \equiv N \qquad -C = N \qquad -$$

Chapter 7:

Part 4: E2 Reactions to make Alkenes

1. SN1 vs. SN2

- 2. The E2 Mechanism
- Regiochemistry of the E2 Mechanism
- 4. The Stereochemistry of the E2 Mechanism

When an alkyl halide can undergo either $S_N 1$ or $S_N 2$,

the concentration of the nucleophile,

the reactivity of the nucleophile,

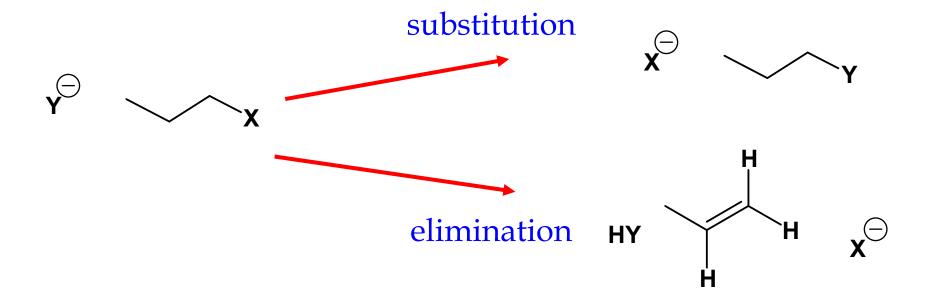
and the solvent of the reaction

will determine which reaction will predominate

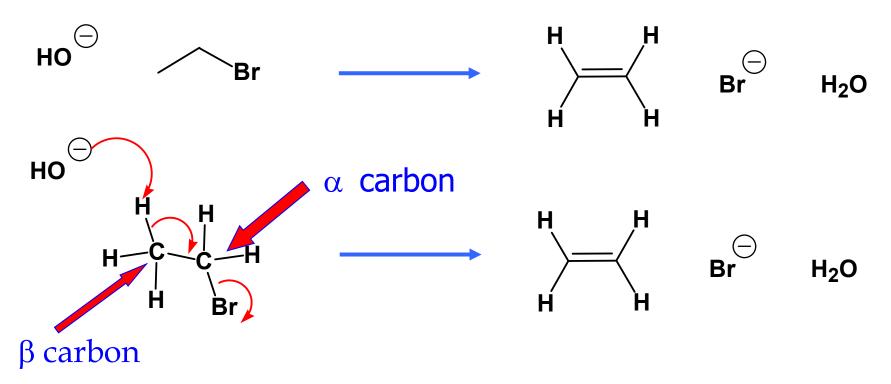
An S_N2 reaction is favored by a high concentration of a good nucleophile

An S_N1 reaction is favored by a low concentration of a nucleophile or by a poor nucleophile

Vinyl and aryl halides do not undergo S_N2 because

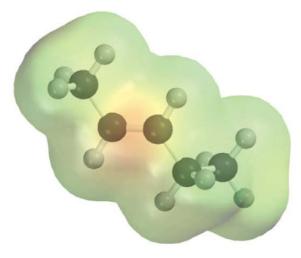

Vinyl and aryl halides do not undergo S_N1 because

RCH=CH-Cl
$$\rightarrow$$
 RCH=CH + Cl \rightarrow Br


So SN2 and SN1 do NOT work. On the test....

$$NaI$$
 acetone NO reaction

In addition to substitution, an alkyl halide can undergo an elimination reaction


The E2 Reaction

The presence of a leaving group creates a slight positive charge at the electrophilic carbon and at the protons on the a carbon.

A basic reagent can thus attack this proton and cause elimination.

The driving force is the protonation of a stronger base and formation of a weaker one.

$$C = C$$
 H
 $C = C$
 CH_2CH_3

(E)-2-pentene

interacting electron clouds cause steric strain H_3C CH₂CH₃

(Z)-2-pentene

Characteristics of the E2 mechanism

- Second order kinetics: rate = k[RX][B]
 - -bimolecular rate-determining step
- Concerted Reaction
- Reaction <u>is</u> regiospecific
 - more subsituted alkene is preferred product
- Reaction <u>is</u> stereospecific
 - trans is preferred

For Next Time....

Suggested Homework Problems Chapter 7 #1,14,21,26, 31, 36,38,41,44,50,52,53,59,64,65