Chapter 7 End: Competition Between Elimination and Substitution

- SN1 vs. SN2
- E1 vs. E2
- SN2 vs E2/ SN1 vs. E1

Substitution Nucleophilic Bimolecular

<u>SN2</u>

Substitution Nucleophilic Unimolecular

Experimental Evidence

SN2

1. The rate of the reaction is dependent on the concentration of the alkyl halides and the nucleophile

SN1

1. The rate of the reaction depends only on the concentration of the alkyl halide

E2 vs. E1

E2 - Elimination *Bimolecular*

E1 - Elimination Unimolecular

Some experimental data:

1. Primary alkyl halide as starting material (SM); base as "nucleophile"

3. Tertiary alkyl halide as starting material (SM); base as "nucleophile"

Competition Between Substitution and Elimination

Alkyl halides can undergo $S_N 2$, $S_N 1$, E2 and E1

1) decide whether the reaction conditions favor $S_N 2/E2$ or $S_N 1/E1$

2) decide how much of the product will be the substitution product and how much of the product will be the elimination product

List of Factors/Concepts:

Steric effects: slows SN₂, helps E₂

$$B: + H + C = C + L^{-}$$
Driving force is protonation of strong base and formation of weaker one. L:
$$H_{3}C + C + CH_{3}C +$$

 Steric hindrance at α or β carbons. We know that for 2° and 3° carbon centers SN₂ reaction is slowed. This allows E₂ to become *relatively* faster and we see more elimination product.

Illustration showing effect of branching at α or β carbons:

 $RBr + CH_3CH_2O^-$ (1M) $ROCH_2CH_3 + Br^-$ CH,CH,OH or elimination product % Subst. %Elimin. CH₃Br ~ 0 99+ CH₃CH₂Br 99 1 CH₃CH₂CH₂CH₂Br 90 10 (CH₃)₂CHCH₂Br 40 60 (CH₃)₂CHBr 20 80 (CH₃CH₂)₂CHBr 12 88

When is substitution favored?

Given that the major reaction of a secondary alkyl halide with an alkoxide ion is elimination by the E2 mechanism, we can expect the proportion of substitution to increase with:

1)

Uncrowded Alkyl Halides

Decreased crowding at carbon that bears the leaving group increases substitution relative to elimination.

primary alkyl halide

 $CH_3CH_2CH_2Br$

NaOCH $_2$ CH $_3$ ethanol, 55°C But a crowded alkoxide base can favor elimination even with a primary alkyl halide.

primary alkyl halide + bulky base

 $CH_3(CH_2)_{15}CH_2CH_2Br$

 $KOC(CH_3)_3$ *tert*-butyl alcohol, 40°C Weakly Basic Nucleophile

Weakly basic nucleophile increases substitution relative to elimination

secondary alkyl halide + weakly basic nucleophile

$$CH_3CH(CH_2)_5CH_3$$

 CI
 KCN
 pK_a (HCN) = 9.1
 $DMSO$

For Next Time....

Suggested Homework Problems Chapter 7 #1,14,21,26, 31, 36,38,41,44,50,52,53,59,64,65

Exam#2 → Wednesday OCTOBER 25th!