Chapter 8 part 5:

Oxidative Cleavage

Anti Dihydroxylation

 Dihydroxylation occurs when two –OH groups are added across a C=C double bond.

ANTI dihydroxylation is achieved through a multi-step process.

- Diols are often further oxidized by MnO_4^{1-} , and MnO_4^{1-} is reactive toward many other functional groups as well.
- The synthetic utility of MnO₄1- is limited.

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}CH_{2}$$

$$CH_{3}CH_{2}$$

$$CH_{3}CH_{2}$$

$$CH_{3}CH_{2}$$

$$CH_{2}$$

Hydroxylation of Alkenes

$$CH_3CH = CHCH_3 \xrightarrow{\text{KMnO}_4, \text{HO}^-, \text{H}_2O}$$

Mechanism for cis-Glycol Formation

• Like other *syn* additions, *syn* dihydroxylation adds across the C=C double bond in ONE step

A cyclic osmate ester

 Because OsO₄ is expensive and toxic, conditions have been developed where the OsO₄ is regenerated after reacting, so only catalytic amounts are needed

Oxidative Cleavage with O₃

- C=C double bonds are also reactive toward oxidative cleavage
- Ozonolysis is one such process

Oxidative Cleavage with O₃

 Common reducing agents include dimethyl sulfide (DMS) and Zn/H₂O.

Oxidative Cleavage of Alkenes by Ozonolysis

$$\begin{array}{ccccccccccc}
R & H & & & & & & & & & \\
R & & & & & & & & & & & \\
R & & & & & & & & & & \\
R & & & & & & & & & & \\
R & & & & & & & & & \\
R & & & & & & & & & \\
O & & & & & & & & & \\
R & & & & & & & & & \\
O & & & & & & & & \\
R & & & & & & & & \\
O & & & & & & & & \\
O & & & & & & & & \\
R & & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
R & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
R & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & & & & \\
O & & & & \\
O & & & & & \\$$

Ozonides can be cleaved to carbonyl compounds with a reducing agent

Examples of Ozonolysis of Alkenes

$$c = c \xrightarrow{O_3} \xrightarrow{CH_2CI_2, -78 \, ^{\circ}C}$$

An alkene

The molozonide is unstable because it has two O–O bonds. The ozonide is more stable.

$$CH_3 \xrightarrow{1. O_3} CH_3$$

$$CH_3 \xrightarrow{2. Zn, H_3O^+}$$

Isopropylidenecyclohexane (tetrasubstituted)

Used in determination of structure of an unknown alkene

$$CH_{3}(CH_{2})_{7}CH = CH(CH_{2})_{7}COCH_{3} \xrightarrow{1. O_{3}} \frac{1. O_{3}}{2. Zn, H_{3}O^{+}}$$

Methyl 9-octadecenoate (disubstituted)

Cleavage of 1,2-Diols

$$\begin{array}{c|c}
CH_3 \\
\hline
OH \\
OH
\end{array}$$

- Reaction of a 1,2-diol with **periodic** (*per-iodic*) acid, HIO₄,
 cleaves the diol into two carbonyl compounds
- Sequence of diol formation with OsO₄ followed by diol cleavage is a good alternative to ozonolysis

One Step Syntheses

- To set up a synthesis, assess the reactants and products to see what changes need to be made
- Label each of the processes below

For Next Time....

Next week Chapter 9

Suggested Homework Problems Chapter 8

1, 2, 5, 9, 12,13, 18, 24, 27, 31, 42-46, 52, 57,62,63

Suggested Homework Problems Chapter 9

1,7,9,13,18,20,32-37, 41,44,52,57