# Chapter 9 part 5:

### Oxidative Cleavage

• Today (9.8-9.13) Halogenation and Oxidative Cleavage



## **Anti Dihydroxylation**

 Dihydroxylation occurs when two –OH groups are added across a C=C double bond.



ANTI dihydroxylation is achieved through a multi-step process.

## **Anti** Dihydroxylation

- Nucleophile attacks <u>more</u> substituted carbon of a protonated epoxide
- Inversion of configuration at site of nucleophilic attack
- Water is a poor nucleophile, so the epoxide is activated with an acid



Mild acid reacts with epoxides in water to generate anti 1,2-diols

## **Anti Dihydroxylation**

Note the similarities between three key intermediates







A protonated epoxide

A bromonium ion

A mercurinium ion

- Ring strain and a +1 formal charge makes these structures GREAT electrophiles
- They also each yield anti products, because the nucleophile must attack from the side opposite the leaving group

- Diols are often further oxidized by  $MnO_4^{1-}$ , and  $MnO_4^{1-}$  is reactive toward many other functional groups as well.
- The synthetic utility of  $MnO_4^{1-}$  is limited.

$$CH_{3}CH_{2}C=CHCH_{3} \xrightarrow{KMnO_{4}, HO^{-}} CH_{3}CH_{2}CCH_{3} + CH_{3}CO^{-}$$

$$CH_{3}CH_{2}CH=CH_{2} \xrightarrow{KMnO_{4}} CH_{3}CH_{2}COH + CO_{2}$$

$$CH_{3}CH_{2}CH=CH_{2} \xrightarrow{KMnO_{4}, HO^{-}} CH_{3}CH_{2}COH + CO_{2}$$

A peroxyacid,  $OsO_4$ , and (cold basic)  $KMnO_4$  break only the  $\pi$  bond of the alkene

Ozone and acidic KMnO $_4$  break both the  $\pi$  bond and the  $\sigma$  bond

## <u>Hydroxylation of Alkenes</u>

$$CH_{3}CH = CHCH_{3} \xrightarrow{KMnO_{4}, HO^{-}, H_{2}O} CH_{3}CH = CHCH_{3}$$

$$cold CH_{3}CH = CHCH_{3}$$

$$a \ vicinal \ diol$$

### Mechanism for cis-Glycol Formation

$$\begin{array}{c} O \\ O \\ O \\ O \end{array} \longrightarrow \begin{array}{c} H \\ O \\ H \end{array} \longrightarrow \begin{array}{c} H$$

 Like other syn additions, syn dihydroxylation adds across the C=C double bond in ONE step



A cyclic osmate ester

$$\begin{array}{c|c}
O & O & O \\
\hline
O & O & Na_2SO_3/H_2O \\
\hline
O & O & NaHSO_3/H_2O
\end{array}$$
OH

 Because OsO<sub>4</sub> is expensive and toxic, conditions have been developed where the OsO<sub>4</sub> is regenerated after reacting, so only catalytic amounts are needed



# Oxidative Cleavage with O<sub>3</sub>

- C=C double bonds are also reactive toward oxidative cleavage
- Ozonolysis is one such process



Ozone exists as a resonance hybrid of two contributors

# Oxidative Cleavage with O<sub>3</sub>

 Common reducing agents include dimethyl sulfide and Zn/H<sub>2</sub>O.

### Oxidative Cleavage of Alkenes by Ozonolysis

Ozonides can be cleaved to carbonyl compounds with a reducing agent

### **Examples of Ozonolysis of Alkenes**

The molozonide is unstable because it has two O–O bonds. The ozonide is more stable.

Isopropylidenecyclohexane (tetrasubstituted)

Cyclohexanone Acetone

84%; two ketones

Used in determination of structure of an unknown alkene

$$CH_{3}(CH_{2})_{7}CH = CH(CH_{2})_{7}COCH_{3} \xrightarrow{1. O_{3}} \underbrace{CH_{3}(CH_{2})_{7}CH} + \underbrace{HC(CH_{2})_{7}COCH_{3}} + \underbrace{HC(CH_{2})_{7}COCH_{3}}$$

$$Methyl \ 9\text{-octadecenoate}$$

$$(disubstituted)$$

$$Nonanal \qquad Methyl \ 9\text{-oxononanoate}$$

### Cleavage of 1,2-Diols

- Reaction of a 1,2-diol with periodic (per-iodic) acid, HIO<sub>4</sub>, cleaves the diol into two carbonyl compounds
- Sequence of diol formation with OsO<sub>4</sub> followed by diol cleavage is a good alternative to ozonolysis



#### Review of Addition Reactions

Ten reactions of alkenes covered in this chapter:

- Hydrohalogenation (Markovnikov)
- 4. Hydroboration-oxidation
- 8. Anti dihydroxylation

- 2. Hydrohalogenation (anti-Markovnikov)
- Hydrogenation

9. Syn dihydroxylation

Acid-catalyzed hydration and oxymercuration-demercuration 6. Bromination

- 10. Ozonolysis
- 7. Halohydrin formation

#### Review of Addition Reactions

## One Step Syntheses

- To set up a synthesis, assess the reactants and products to see what changes need to be made
- Label each of the processes below



### For Next Time....

Suggested Homework Problems Chapter 8

# 1, 2, 5, 9, 12,13, 18, 24, 27, 31, 42-46, 52, 57,62,63

Suggested Homework Problems Chapter 9

# 1,7,9,13,18,20,32-37, 41,44,52,57

MONDAY Chapter 9 Alkynes (9.1-9.4) Wednesday (9.4-9.7) Reactions with Alkynes Friday (9.7- 9.11)

# Oxidative Cleavage with O<sub>3</sub>

Predict the major product(s) for the reactions below.

