Chapter 9:

Alkynes and Reactions with Alkynes

- Today (9.5-9.10) Reactions with Alkynes
- Friday (End Chapter 9)
 - ✓ Preparation of Alkynes
 - ✓ Acetylide Formation
 - ✓ Hydrohalogenation
 - ✓ Anti Markovnikov Hydrohalogenation
 - Addition of Halogens
 - Reduction of Alkynes
 - Acid Catalyzed Addition of Water
 - Hydroboration/Oxidation
 - Oxidative Cleavage

Hydrohalogenation of Alkynes

$$H_3C$$
 $H_2C-C\equiv C-CH_3+H-CI$
excess

Anti- Markovnikov Addition

Halogenation of Alkynes

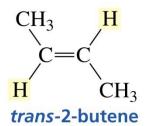
$$CH_3CH_2C = CCH_3 \xrightarrow{Cl_2} CH_2Cl_2$$

$$CH_3C \equiv CH \xrightarrow{Br_2} CH_2Cl_2$$

Halogenation of Alkynes

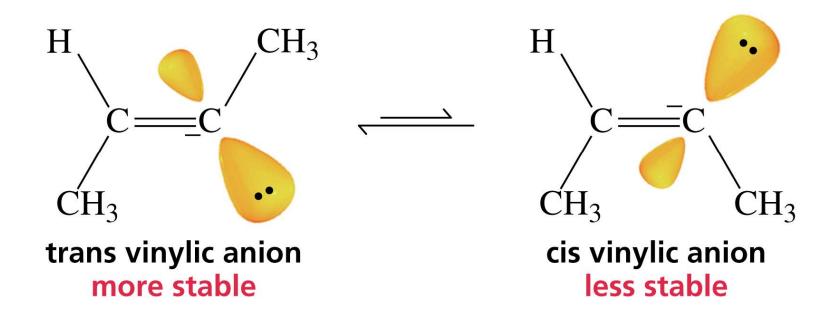
$$R = R \xrightarrow{\frac{X_2 \text{ (one equivalent)}}{CCI_4}}$$

AEVG1 Anne E. V. Gorden, 10/28/2017


Addition of Hydrogen Formation of Cis Alkene

Like alkenes, alkynes can readily undergo hydrogenation.

$$CH_3CH_2$$
 $C = CH$ H_2 Pt/C


Chemical Reduction of Internal Alkynes to form Trans Alkenes

 $CH_3C \equiv CCH_3$ **2-butyne**

Reason for trans addition:

The radical anion adopts a trans configuration to reduce repulsion.

Reduction of Alkynes – Summary

 Two equivalents of H₂ are consumed for each alkyne → alkane conversion.

New Functional Groups

Acid-Catalyzed Addition of Water to Alkynes

Like alkenes, alkynes can also undergo acid catalyzed Markovnikov hydration.

$$CH_3C \equiv CCH_3 + H_2O \xrightarrow{H_2SO_4}$$

Hydroboration — Internal Alkynes

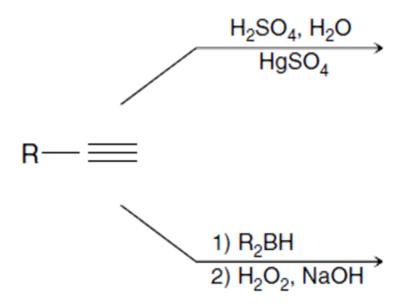
$$3 \text{ CH}_{3}\text{C} \equiv \text{CCH}_{3} + \text{BH}_{3} \xrightarrow{\text{THF}} \overset{\text{CH}_{3}}{\text{H}} \overset{\text{CH}_{3}}{\text{C}} = \overset{\text{CH}_{3}}{\text{H}} \xrightarrow{\text{HO}^{-}, \text{ H}_{2}\text{O}_{2}} \xrightarrow{\text{H}_{2}\text{O}}$$

boron-substituted alkene

Internal alkynes react easily with BH_3 to form a trialkenylborane. The addition is comparable to treatment of an alkene with BH_3 . The reaction involves <u>syn</u> addition of hydrogen and boron.

Formation of Ketone versus Aldehyde

$$H_2O, H_2SO_4$$
 $HgSO_4$
 $CH_3C \equiv CH$


1. disiamylborane
2. HO^-, H_2O_2, H_2O

Hydroboration—Oxidation of Terminal Alkynes

$$HO^-$$
, H_2O_2 H $C=C$ H CH_2CH_3 $CH_3CH_2CH_2CH$

Hydration Regioselectivity

- Markovnikov hydration leads to a ketone.
- Anti-Markovnikov hydration leads to an aldehyde.

Suggested Homework Problems Chapter 9

1,7,9,13,18,20,32-37, 41,44,52,57