Chapter 9:

Alkynes and Reactions with Alkynes

- Today (9.5-9.10) Reactions with Alkynes
- Friday (End Chapter 9)
 - ✓ Preparation of Alkynes
 - ✓ Acetylide Formation
 - ✓ Hydrohalogenation
 - ✓ Anti Markovnikov Hydrohalogenation
 - Addition of Halogens
 - Reduction of Alkynes
 - Acid Catalyzed Addition of Water
 - Hydroboration/Oxidation
 - Oxidative Cleavage

Anti- Markovnikov Addition

Halogenation of Alkynes

Halogenation of Alkynes

• When one equivalent of halogen is added to an alkyne, both *anti* and *syn* addition is observed

• The mechanism for alkyne halogenation is not fully understood. If it was like halogenation of an alkene, only the *anti* product would be obtained.

AEVG1 Anne E. V. Gorden, 10/28/2017

Addition of Hydrogen Formation of Cis Alkene

Like alkenes, alkynes can readily undergo hydrogenation.

$$CH_{3}CH_{2}C \equiv CH \xrightarrow{H_{2}} CH_{3}CH_{2}CH = CH_{2} \xrightarrow{H_{2}} CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{3}CH_{2}CH_{2}CH_{3}CH_$$

A deactivated or poisoned catalyst can be used to selectively react with the alkyne.

Chemical Reduction of Internal Alkynes to form Trans Alkenes

Dissolving metal conditions can give anti addition producing the trans alkene.

Reason for trans addition:

The radical anion adopts a trans configuration to reduce repulsion.

Reduction of Alkynes – Summary

Two equivalents of H₂ are consumed for each alkyne→alkane conversion.

Suggested Homework Problems Chapter 9 <u># 1,7,9,13,18,20,32-37, 41,44,52,57</u>