<u>Chapter 10: Alkyl Halides Part 1:</u> <u>Preparing Alkyl Halides</u>

Today – Chapter 10(10.1-10.4)

- Making Aklyl Halides (Review)
- Radicals
- •Patterns in Radical Mechanisms
- Anti-Markovnikov Hydrohalogenation
- Radical halogenation

Designing a Synthesis

Designing a Synthesis

How do we Synthesize 1-Bromobutane? Markovnikov

 $CH_3CH_2CH=CH_2 +$ 1-butene Br | CH₃CH₂CHC<mark>H</mark>₃ **2-bromobutane**

Anti- Markovnikov?

 $CH_3CH_2CH = CH_2 + HBr$ 1-butene CH₃CH₂CH₂CH₂Br
1-bromobutane

Preparing Alkyl Halides

Hydrohalogenation

Radical Addition – to an alkane

Generation of Radicals

Free radicals form when bonds break HOMOLYTICALLY

Note the single-barbed or fishhook arrow used to show the electron movement.

Free Radicals

 Radicals appear to be trigonal planar (*sp*² hybridized) or shallow trigonal planar (*sp*³ hybridized)

*sp*³ hybridized (trigonal pyramidal)

Trigonal planar

Shallow pyramid (rapidly inverting)

Free Radical Stability

- Radicals are neutral (no formal charge) but still electron deficient (incomplete octet)
- Radicals follow the same stability trend as carbocations, as they are both electron deficient species

Increasing stability

Free Radical Resonance

Radicals, like carbocations, can be stabilized by resonance delocalization.

Fishhook arrows are used to present possible resonance forms

The more resonance delocalized a radical is, the more stable it is

Radical Electron Movement

1. Homolytic cleavage, initiated by light or heat:

$$X \longrightarrow X' \xrightarrow{\Delta} X' X'$$

Х

2. Addition to a pi bond:

X

$$X \stackrel{\frown}{} H \stackrel{\frown}{-} R' \longrightarrow X \stackrel{\bullet}{-} H \stackrel{\bullet}{-} R$$

4. Halogen abstraction:

$$\mathbf{R}^{\bullet} \widehat{\mathbf{X}} \widehat{\mathbf{X}} \xrightarrow{\mathbf{X}} \mathbf{R} \xrightarrow{\mathbf{X}} \mathbf{R} \xrightarrow{\mathbf{X}} \mathbf{X}$$

Radical Electron Movement

5. Elimination: the radical from the a carbon is pushed toward the β carbon to eliminate a group on the β carbon (reverse of addition to a pi bond):

Radical Electron Movement

For Next Time....

Suggested Homework Problems Chapter 9 <u># 1,7,9,13,18,20,32-37, 41,44,52,57</u>

Suggested Homework Problems Chapter 10 # 1, 2, 12, 16, 23,24, 33, 42