Chapter 12: Alcohols

- Today –Reactions with Alcohols
 - 12.4 Preparation of Alcohols by Reduction
 - 12.6 Preparation of Alchohols with Grignard
 - 12.9 Reactions of Alcohols
 - 12.10 Oxidation of Alcohols

The oxidation state of a carbon atom equals the total number of its C-O, C-N, and C-X bonds

Lose Electrons Oxidation - Gain Electrons Reduction

Reagents that can donate a HYDRIDE are generally good reducing agents:

Sodium borohydride

Lithium aluminum hydride (LAH or LiAlH4)

Alcohols via Reduction

 NaBH₄ is a source of hydride (H⁻) which does nucleophilic addition to the carbonyl carbon, followed by proton transfer from the solvent:

- We saw how alcohols can be formed by the reduction of a carbonyl.
- The reverse process is also possible with the right reagents.

• Oxidation of the alcohol with chromic acid involves (1) formation of a chromate ester, and (2) elimination to form the π bond

STAGE 1

Chromate ester

STAGE 2

Chromate ester

The oxidation of a primary alcohol can be stopped at the aldehyde if <u>pyridinium chlorochromate (PCC)</u> is used as the oxidizing agent

$$\begin{array}{ccc} CH_3CH_2CH_2 & & & & & \\ CH_3CH_2CH_2 & & & & \\ CH_2CI_2 & & & \\ CH_2CI_2 & & & \\ CH_3CH_2CH_2 & & \\ CH_3CH_2 & &$$

Oxidation of Secondary Alcohols

- Effective with inexpensive reagents such as Na₂Cr₂O₇ in acetic acid
- PCC is used for sensitive alcohols at lower temperatures

Testosterone (male sex hormone) 4-Androstene-3,17-dione (82%)

Like PCC, the Swern oxidation converts 1° alcohols to aldehydes

For Next Time....

Suggested Homework Problems Chapter 9 # 1,7,9,13,18,20,32-37, 41,44,52,57

Suggested Homework Problems Chapter 10 # 1, 2, 12, 16, 23,24, 33, 42

Suggested Homework Problems Chapter 12! # 1, 4, 5, 7, 13, 17, 27-32, 34, 43-45