Chapter 12: Alcohols

- Today –Finish up Reactions with Alcohols
 - 12.6 Preparation of Alcohols with Grignard
 - 12.7 Protection of Alcohols
 - 12.9 Alcohols Substitution and Elimination

Oxidation of Alcohols

2. **Dess-Martin periodane oxidation (DMP)** – yields analogous results as the Swern oxidation:

Organometallic Compounds

An organic compound containing a carbon-metal bond

$$\frac{\delta - \delta + \delta}{C - Si}$$

$$\frac{\delta - \delta}{C} = \frac{\delta + \delta}{Z}$$

$$\frac{\delta}{C} - \frac{\delta}{Al}$$

$$\frac{\delta - \delta +}{C - Pb}$$

$$\frac{\delta - \delta^{+}}{C - Sn}$$

$$\delta$$
+ δ - R-X

organometallics are a source of *nucleophilic* carbon

Preparation of Organomagnesium Compounds <u>Grignard Reagents</u>

prepared by reaction of alkyl halides with magnesium

$$R - X + Mg \longrightarrow RMgX$$

$$\longrightarrow Br + Mg \longrightarrow MgBr$$

$$\longrightarrow MgBr + \longrightarrow Br$$

Grignard Reagents and Other Functional Groups in the Same Molecule

 Grignard reagents Can NOT be prepared if there are reactive functional groups in the same molecule, including proton donors

where
$$FG = -OH, -NH, -SH, -CO_2H$$
 The Grignard reagent is protonated by these groups.

FG =
$$-CH$$
, $-CR$, $-CNR_2$
 $-C \equiv N$, $-NO_2$, $-SO_2R$

The Grignard reagent adds to these groups.

Reactions of Grignard Reagents with Carbonyl Compounds

Formaldehyde reaction

Cyclohexylmagnesium bromide

Formaldehyde

Aldehyde reaction

Phenylmagnesium bromide

3-Methylbutanal

Ketone reaction

Ethylmagnesium bromide

Cyclohexanone

Protection of Alcohols

Consider the reaction below. WHY won't it work?

BrMg
$$\sim$$
 OH $\stackrel{O}{R}$ $\stackrel{R}{R}$ $\stackrel{R}{R}$ $\stackrel{R}{R}$

- The alcohol can act as an acid, especially in the presence of reactive reagents like the Grignard reagent.
- The alcohol can be protected to prevent it from reacting.

Protection of Alcohols

One such protecting group is trimethylsilyl (TMS).

- The TMS protection step requires the presence of a base.
- The TMS group can later be removed with H_3O^+ or F^- .
- TBAF is often used to supply fluoride ions.

tetrabutylammonium fluoride (TBAF)

Protection of Alcohols

 In section 7.12, we saw alcohols undergo elimination in acidic conditions:

$$OH \xrightarrow{\text{conc. H}_2SO_4} + H_2O$$

• 3° follow? mechanism under these conditions:

3° alcohols area converted to alkyl halides with HX (S_N1 rxn)

For 1° or 2° alcohols, the reaction occurs via S_N2

To make an alkyl chloride, ZnCl₂ must be used with HCl

$$OH \xrightarrow{HCl} C$$

The Zinc cation is required to make the –OH a better leaving group

Nuc attack on a Lewis acid
$$\begin{array}{c} \text{Nuc attack} + \\ \text{on a Lewis acid} \\ \text{ZhCl}_2 \\ \text{OH} \\ \begin{array}{c} \text{ZhCl}_2 \\ \text{Sh}_2 \\ \end{array}$$

• 1° and 2° alcohols can also be converted to alkyl halides using SOCl₂ or PBr₃:

For Next Time....

Suggested Homework Problems Chapter 9 # 1,7,9,13,18,20,32-37, 41,44,52,57

Suggested Homework Problems Chapter 10 # 1, 2, 12, 16, 23,24, 33, 42

Suggested Homework Problems Chapter 12! # 1, 4, 5, 7, 13, 17, 27-32, 34, 43-45